Algebraic Topology from a Homotopical Viewpoint

Marcelo Aguilar
Samuel Gitler
Carlos Prieto

Springer
Universitext

Editors (North America): S. Axler, F.W. Gehring, and K.A. Ribet

Aguilar/Gitler/Prieto: Algebraic Topology from a Homotopical Viewpoint
Aksnes/Khamis: Nonstandard Methods in Fixed Point Theory
Andersson: Topics in Complex Analysis
Aupetit: A Primer on Spectral Theory
Bachman/Narici/Beckenstein: Fourier and Wavelet Analysis
Badescu: Algebraic Surfaces
Balakrishnan/Ranganathan: A Textbook of Graph Theory
Balse: Formal Power Series and Linear Systems of Meromorphic Ordinary
Differential Equations
Bapat: Linear Algebra and Linear Models (2nd ed.)
Berberian: Fundamentals of Real Analysis
Boltyanskii/Efremovich: Intuitive Combinatorial Topology. (Shenitzer, trans.)
Booss/Bleecker: Topology and Analysis
Borkar: Probability Theory: An Advanced Course
Böttcher/Silbermann: Introduction to Large Truncated Toeplitz Matrices
Carleson/Gamelin: Complex Dynamics
Cecil: Lie Sphere Geometry: With Applications to Submanifolds
Chae: Lebesgue Integration (2nd ed.)
Charlap: Bieberbach Groups and Flat Manifolds
Chern: Complex Manifolds Without Potential Theory
Cohn: A Classical Invitation to Algebraic Numbers and Class Fields
Curtis: Abstract Linear Algebra
Curtis: Matrix Groups
Debarre: Higher-Dimensional Algebraic Geometry
Deitmar: A First Course in Harmonic Analysis
DiBenedetto: Degenerate Parabolic Equations
Dimca: Singularities and Topology of Hypersurfaces
Edwards: A Formal Background to Mathematics I a/b
Edwards: A Formal Background to Mathematics II a/b
Farenick: Algebras of Linear Transformations
Foulds: Graph Theory Applications
Friedman: Algebraic Surfaces and Holomorphic Vector Bundles
Fuhrmann: A Polynomial Approach to Linear Algebra
Gardiner: A First Course in Group Theory
Gårding/Tambour: Algebra for Computer Science
Goldblatt: Orthogonality and Spacetime Geometry
Gustafson/Rao: Numerical Range: The Field of Values of Linear Operators
and Matrices
Hahn: Quadratic Algebras, Clifford Algebras, and Arithmetic Witt Groups
Heinonen: Lectures on Analysis on Metric Spaces
Holmgren: A First Course in Discrete Dynamical Systems
Howe/Tan: Non-Abelian Harmonic Analysis: Applications of SL(2, R)
Howes: Modern Analysis and Topology
Ihsieh/Sibuya: Basic Theory of Ordinary Differential Equations
Humi/Miller: Second Course in Ordinary Differential Equations
Hurwitz/Kritikos: Lectures on Number Theory
Jennings: Modern Geometry with Applications

(continued after index)
Algebraic Topology from a Homotopical Viewpoint
To my parents
To Danny

To Viola
To Sebastian and Adrian
This page intentionally left blank
This book introduces the basic concepts of algebraic topology using homotopy-theoretical methods. We believe that this approach allows us to cover the material more efficiently than the more usual method using homological algebra. After an introduction to the basic concepts of homotopy theory, using homotopy groups, quasifibrations, and infinite symmetric products, we define homology groups. Furthermore, with the same tools, Eilenberg-Mac Lane spaces are constructed. These, in turn, are used to define the ordinary cohomology groups. In order to facilitate the computation, cellular homology and cohomology are defined.

In the second half of the book, vector bundles are presented and then used to define K-theory. We prove the classification theorems for vector bundles, which provide a homotopy approach to K-theory. Later on, K-theory is used to solve the Hopf invariant problem and to analyze the existence of multiplicative structures in spheres. The relationship between cohomology and vector bundles is established introducing characteristic classes and related topics. To finish the book, we unify the presentation of cohomology and K-theory by proving the Brown representation theorem and giving a short account of spectra.

In two appendices at the end of the book the proof of the Dold-Thom theorem on quasifibrations and infinite symmetric products is given in detail, and a new proof of the complex Bott periodicity theorem, using quasifibrations, is presented.

It is expected that the reader has a basic knowledge of general topology and algebra. In any case, the book is mainly aimed at advanced undergraduates and at graduate students and researchers for whose work algebraic-topological concepts are needed.

This text originated in a preliminary version in Spanish, which was a joint edition of the Mathematics Institute of the National University of Mexico and McGraw-Hill Interamericana Editores. To both institutions the authors are grateful. The translation of the main body of the text was the excellent
job of Stephen Bruce Sontz, to whom we express our deep thanks. Our gratitude goes also to Springer-Verlag, particularly to Ms. Ina Lindemann for her interest in our work, and to the referees for their valuable comments which certainly helped to improve the English version of the book. Its title is, of course, a tribute to John Milnor, from whose books and papers we have learnt many important concepts, which are included in this text.

Last, but not least, we wish to acknowledge the support of Professor Albrecht Dold, who after reading the Spanish manuscript gave various important comments to make some parts better.

Mexico City, Mexico
Autumn 2001

Marcelo Aguilar
Samuel Gitler
Carlos Prieto

\[This author was supported by CONACYT grants 2546-E and 32223-E. \]
CONTENTS

Preface vii

Introduction xiii

Basic Concepts and Notation xvii

1 Function Spaces 1

1.1 Admissible Topologies 1
1.2 Compact-Open Topology 2
1.3 The Exponential Law 3

2 Connectedness and Algebraic Invariants 9

2.1 Path Connectedness 9
2.2 Homotopy Classes 10
2.3 Topological Groups 13
2.4 Homotopy of Mappings of the Circle into Itself 15
2.5 The Fundamental Group 28
2.6 The fundamental Group of the Circle 41
2.7 H-Spaces .. 45
2.8 Loop Spaces .. 48
2.9 H-Cospaces ... 50
2.10 Suspensions .. 53